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Abstract

Interaction graphs are extensively used as a tool for designing prismatic member sections subjected to several

combined stresses. For a long time, sets of these graphs have been available in building technologies: reinforced
concrete, steel and composite sections, under various stresses.
This paper shows the general formulation for obtaining the graphs corresponding to bending, shear and axial

forces of H-shaped steel sections. A general study of the stresses interaction limit surface is made, including a
detailed description of its three regions, and the generation of interaction graphs corresponding to their sections by
constant axial values. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The indisputable convenience of using interaction diagrams of several combined e�orts (generally up
to three), on a prismatic member section, is the cause for the spread of those graphs. Among these can
be mentioned, as being universal, those corresponding to reinforced concrete sections elaborated by
JimeÂ nez Montoya et al. (1991); we can also cite those available for metallic or mixed pro®les in several
publications, among which stand out the works by Atsuta and Chen (1976), Zhou and Chen (1985),
Bradford (1991) and E.C.S. (1992).

The interaction between normal and tangential stresses expressing Mises' yield criterion, applied to
the most stressed point in a metallic section, is usually considered as a limit for the elastic design of the
resistant element.

Stresses expression, that depending on the e�orts gives the Resistance of Materials, allows application
of that limit condition directly to them. When this criterion form is given, the interaction limit surfaces
for trios of applied e�orts result in planes, quadrics, more complex surfaces, or a mixture of them.

In this paper, the obtaining of the interaction limit surface among axial, bending and shear forces for
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H-shaped metallic sections (series IPN, IPE, HEB, HEA, HEM) and the diagrams corresponding to
their sections by planes of axial constant force are shown.

2. Problem outlining

In Fig. 1 the notation and the considered stresses in the H-shaped section are shown. Those stresses
are shown in this way
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Fig. 1. Geometrics and stresses.
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Sx � static first order moment of a half section, about x-axis:

I � inertia moment of the section, about x-axis

A � section area

With Mises' criterion, the square of comparison stress will be

s2ees2co � s2 � 3t2 �

8>><>>:
�v� my�2�3q2a2�s� in the flange �1�

�v� my�2�3q2
�
bÿ y2

2

�2

in the web �2�

3. Searching of the most stressed point

3.1. In the ¯ange

The most solicited point in the ¯ange is de®ned by s � b 0, y � h=2 (Fig. 1) in which an absolute
maximum of s2co is produced; and when this one is the most stressed of the section, the limit yield
condition will be:

s2e � v2 � 2
h

2
vmÿ h2

4
m2 � 3q2a21 �3�

being

a1 � a�b 0 � � �hÿ ea� � b
0

2

3.2. In the web

The functions s, t, s2, t2 and s2co � f �y� in the web are shown in Fig. 2, the last one being expressed
as follows:
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f�y� � v2 � 2vmy� m2y2 � 3q2
�
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�
Its highest value can be reached either in an absolute maximum at y � h1=2, or in a relative one at
whatever position y 2 �0, h1=2� (the problem can be restricted to this interval, given the symmetry of t2)
that we are going to study, vanishing its ®rst derivative:

f 0�y� � 2vm� 2m2y� 3q2
ÿ
y3 ÿ 2by

�
� 0 �4�

Out of the plane q � 0 � Q, where the interaction diagram is, immediately, the straight line
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the required condition is:
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a polynomial equation of third degree, which solutions are
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Fig. 2. Look of stress functions
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In the plane v � 0 � N the independent term of eqn (5) disappears and the solution reduces to:

y1 �0

y2,3 �2

���������������������������
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Among the solutions of eqn (6) there is always a real one; the other two will be also real if this occurs
simultaneously:

3bq2 ÿ m2 > 0 �8a�

9vmq����������������������������
8
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In fact, the performance of eqn (8a) is guaranteed with the performance of eqn (8b); therefore the
condition is reduced to this last one.

The analysis of the second derivative of the function f:

f 00�y� � 9q2y2 ÿ 2
ÿ
3bq2 ÿ m2

�
�9�

shows that the condition (8a) is necessary for the existence of a relative maximum, but it is enough in
the plane v � 0, where in y1 � 0 a relative maximum appears and in y2, y3 relative minima appear.

In general, the existence of a maximum requires that

9q2y21 ÿ 2
ÿ
3bq2 ÿ m2

�
< 0 �10�

Replacing y1 from eqn (6a) remembering the trigonometric relation

cos y � 4 cos3
y
3
ÿ 3 cos

y
3
,

and after some algebraic manipulations, this expression becomes identical to eqn (8b); which is logical,
given the form of the function f:

. If its ®rst derivative vanishes only in a real point, it is a relative minimum as f �y� is continuous and
inde®nitely derivable, and increasing for y 421.

. If it vanishes in three real points, one is maximum and the other two relative minima, by the same
reason, as it can be proved replacing y2 and y3 in eqn (9). In this case, the relative maximum is
always the intermediate solution, that is y1 if in eqn (7) it is chosen
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But, in fact, the existence of the relative maximum only will be the restricting condition when this
one:

(a) Appears inside the web

y1<
h1
2

Replacing y1 of eqn (6a), remembering the trigonometric expression aforementioned, and after some
algebraic manipulations, this condition is expressed:
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(b) It surpasses the value of f at its end:
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and
(c) It surpasses the value of s2co in the ¯ange
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that is
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The rationalization of eqns (12) and (13), taking into account the expression for y1 is excessively long
and takes to expressions of very high degree in q, m, and v, that is why it will not be asserted.

3.2.1. When the absolute maximum is the value f(h1/2), the condition is expressed:

v2 � 2vm
h1
2
� m2

h21
4
� 3q2a22 ÿ s2e � 0 �14�

Being

a22 �
�
bÿ h21

8

�2

This one is to be retained only when this absolute maximum surpasses the corresponding value in the
¯ange:
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Being

a23 � a22 ÿ a21 > 0:

3.2.2. Finally, when the maximum is relative in y1, the yield condition will be:

�v� my1 �2�3q2
�
bÿ y21

2

�2

ÿs2e � 0 �16�

being equally impossible its rationalization in terms of q, m, and v, bearing the expression of y1 in mind.

4. Geometrical interpretation and complete discussion of the problem

The expressions (3), (14) and (16) are the interaction limit conditions for shear, bending and axial
force, and in a space qÿ mÿ v (or Q, M, N) they represent the equation of three surfaces. Each one of
them is of application, as we have seen, in some ®elds of this space, delimited by the surfaces
corresponding to the equations of the expressions (8b), (11), (12) (13) and (15) put in the limit of the
equality to zero. Now we are going to study these surfaces.

4.1. Maximum in the ¯ange

4.1.1. Field
The validity ®eld of the surface, eqn (3), is the part of the space q-m-v complementary to the given one

by condition (15); in the limit:

m2
�
h2

4
ÿ h21

4
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2

�
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Fig. 3. Limit surfaces.
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The study of the quadratic surface (see Garc|a and LoÂ pez (1984) or any other Algebra Treatise) shows
that it is a cone whose vertex is the origin, whose axis is contained in the odd quadrants of the plane
q � 0 and whose elliptic guideline is tangent to the plane m � 0 along the axis (Ov ) (Fig. 3). The ®eld of
application of eqn (3) is the inner part of cone that we name CO1.

4.1.2. Limit surface
The limit surface eqn (3), is another quadratic one; its study shows that it is a cylinder whose axis is

also contained in the plane q � 0 and it passes over the origin, whose guideline is also elliptic (Fig. 3).
We will refer to it as CI1.

4.2. Maximum in the web end

4.2.1. Field
The ®eld of application of the limit surface, eqn (14), is given by eqn (15). That is to say, the region

of the outer space of the cone CO1 (Fig. 3) but limited by the conditions (8b), (11), (12) and (13).
The condition (8b), in its limit, is the equation of a surface of upper order, that we will name S1,

whose study reveals that:

. It is tangent to the plane v � 0 along its straight line m � q
�����
3b
p

.
. It is tangent to the plane m � 0 along the axis Ov.
. It is concave towards the axis m� in the ®rst quadrant (Fig. 3).

The condition (11), in its limit, also shows a quadratic surface, a new cone that we will name CO2,
with the same characteristics of CO1, and tangent to it along Ov.

The condition (12), in the limit, shows the equation of an upper order surface which we will name S2,
with the same characteristics that S1, tangent to it along Ov, but it cuts the plane v � 0 in a straight line

m � q

���������������������
3bÿ 3

h21
16

s
, of minor slope:

The condition (13), in its limit, shows equally an upper order surface which we will name S3, similar
to S1 and S2, that cuts the plane v � 0 in a straight line

m � 2

h
q

��������������������
3b2 ÿ 3a21

q
:

Only for values of m over any of the surfaces S1, S2 or S3, or inside the cone CO2 and simultaneously
outside the cone CO1, the interaction limit surface, eqn (14), is of application.

4.2.2. Limit surface
This surface, eqn (14), is also a quadratic one. It is another elliptic cylinder which we will name CI2

(Fig. 3) with similar characteristics to CI1, whose axis passes over the origin but its slope is minor, and
presents di�erent eccentricities. The cone CO1, that delimits their validity ®elds, also contains the
warped curve intersection of both cylinders.

4.3. Maximum inside the web

4.3.1. Field
The ®eld of application of the limit surface third part is formed by the region lower to the surfaces

S1, S2 and S3, and exterior to the cone CO2 simultaneously.
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Fig. 4. Graphs obtaining by cutting limit surfaces.

Fig. 5. An example for I-section.
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4.3.2. Limit surface
The interaction surface, eqn (16), which we will name S4, is in this case of a very high order, and

(Fig. 3):

Cuts the plane v � 0 along the straight line

q � qu � sueh���
3
p

Sx

Cuts the plane m � 0 along the ellipse

v2 � 3q2b2 � s2e :

5. Limit surface representationÐinteraction diagrams

The limit surface is, then, formed by three portions of two elliptic cylinders and an upper order
surface, secant between themselves. Given the validity ®elds con®guration of each one of these portions,
and their characteristics, the most suitable interaction diagrams are those produced by sections of the
surfaces with constant axial force planes �v � ct�; in this way, all the diagrams present a curve section of
each surface, in its corresponding ®eld, meanwhile the other two possibilities m or q constant present
di�erent typology because not all the planes cut the three surfaces.

Fig. 6. An example for H-section.
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In Figure 4 the obtaining process of these graphs is explained. Figures 5 and 6 show the diagrams for
IPE 200 and HEB 200, respectively, ready for use.

6. Conclusion

The analytical formulation for the obtaining of the limit surface of the axial force, major axis bending
and concomitant shear force interaction, in metallic H-shaped sections, has been exposed.

This surface is formed by three regions, two of them quadratic and the third one is of upper order,
their validity ®elds are equally delimited by quadratic and upper order surfaces in the space N±M±Q.

Once the surfaces have been obtained and studied, we have obtained the interaction diagrams
corresponding to sections by constant axial force, which prove to be the most suitable, resulting in
mixed lines of two elliptic parts and another of upper order, with discontinuity of derivative at the
changing points.

Finally, as an example, the diagrams corresponding to an H-shaped section of narrow ¯ange and
another of wide ¯ange from commercial series, have been represented.
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